
datreant Documentation
Release 1.0.2

David Dotson

Nov 17, 2018

User Documentation

1 Stay organized 3

2 Getting datreant 5

3 Contributing 7

i

ii

datreant Documentation, Release 1.0.2

In many fields of science, especially those analyzing experimental or simulation data, there is often an existing ecosys-
tem of specialized tools and file formats which new tools must work around, for better or worse. Furthermore, central-
ized database solutions may be suboptimal for data storage for a number of reasons, including insufficient hardware
infrastructure, variety and heterogeneity of raw data, the need for data portability, etc. This is particularly the case
for fields centered around simulation: simulation systems can vary widely in size, composition, rules, paramaters,
and starting conditions. And with increases in computational power, it is often necessary to store intermediate results
obtained from large amounts of simulation data so it can be accessed and explored interactively.

These problems make data management difficult, and serve as a barrier to answering scientific questions. To make
things easier, datreant is a Python package that provides a pythonic interface to the filesystem and the data that
lives within it. It solves a boring problem, so we can focus on interesting ones.

User Documentation 1

datreant Documentation, Release 1.0.2

2 User Documentation

CHAPTER 1

Stay organized

datreant offers a layer of flexibility and sanity to the task of analyzing data from many studies, whether they be
individual simulations or data from field work. Its core object, the Treant, is designed to be subclassed: the classes in
datreant are useful on their own but vanilla by design, and are built to be easily extended into domain-specific objects.

As an example: MDSynthesis, a package for storing, recalling, and aggregating data from molecular dynamics simu-
lations, is built on top of datreant.

3

https://github.com/datreant/MDSynthesis

datreant Documentation, Release 1.0.2

4 Chapter 1. Stay organized

CHAPTER 2

Getting datreant

See the installation instructions for installation details. The package itself is pure Python, and light on dependencies
by design.

If you want to work on the code, either for yourself or to contribute back to the project, clone the repository to your
local machine with:

git clone https://github.com/datreant/datreant.git

5

datreant Documentation, Release 1.0.2

6 Chapter 2. Getting datreant

CHAPTER 3

Contributing

This project is still under heavy development, and there are certainly rough edges and bugs. Issues and pull requests
welcome! See Contributing to datreant for more information.

3.1 Installing datreant

You can install datreant from PyPI using pip:

pip install datreant

It is also possible to use --user to install into your user’s site-packages directory:

pip install --user datreant

Alternatively we also provide conda package.

conda install -c datreant datreant

All datreant packages currently support the following Python versions:

- 2.7
- 3.3
- 3.4
- 3.5
- 3.6

3.1.1 Dependencies

The dependencies of datreant are light, with many being pure-Python packages themselves. The current depen-
dencies are:

7

https://pypi.python.org/

datreant Documentation, Release 1.0.2

- asciitree
- pathlib
- scandir
- six
- fuzzywuzzy
- python-Levenshtein

These are automatically installed when installing datreant.

3.1.2 Installing from source

To install from source, clone the repository and switch to the master branch

git clone git@github.com:datreant/datreant.git
cd datreant
git checkout master

Installation of the packages is as simple as

pip install .

This installs datreant in the system wide python directory; this may require administrative privileges. If you have
a virtualenv active, it will install the package within your virtualenv. See Setting up your development environment for
more on setting up a proper development environment.

It is also possible to use --user to install into your user’s site-packages directory:

pip install --user .

3.2 Creating and using Treants

datreant is not an analysis library. Its scope is limited to the boring but tedious task of data management and storage.
It is intended to bring value to analysis results by making them easily accessible now and later.

The basic functionality of datreant is condensed into one object: the Treant. Named after the talking trees of D&D
lore, Treants are persistent objects that live as directory trees in the filesystem and store their state information to disk
on the fly. The file locking needed for each transaction is handled automatically, so more than one python process can
be working with any number of instances of the same Treant at the same time.

Warning: File locking is performed with POSIX advisory locks. These are not guaranteed to work perfectly
on all platforms and file systems, so use caution when changing the stored attributes of a Treant in more than
one process. Also, though advisory locks are mostly process safe, they are definitely not thread safe. Don’t use
multithreading and try to modify Treant elements at the same time.

3.2.1 Persistence as a feature

Treants store their data as directory structures in the file system. Generating a new Treant, for example, with the
following

8 Chapter 3. Contributing

http://wikipedia.org/wiki/Treant
http://wikipedia.org/wiki/Treant

datreant Documentation, Release 1.0.2

>>> # python session 1
>>> import datreant as dtr
>>> s = dtr.Treant('sprout')

creates a directory called sprout in the current working directory. It contains a single directory at the moment

> # shell
> ls -a sprout
. .. .datreant

This .datreant directory is what makes sprout a Treant. On its own it serves as a marker, but as we’ll see later
it can also contain metadata elements distinguishing this Treant from others.

Treants are persistent. In fact, we can open a separate python session (go ahead!) and use this Treant immediately
there

>>> # python session 2
>>> import datreant as dtr
>>> s = dtr.Treant('sprout')

Making a modification to the Treant in one session, perhaps by adding a tag, will be reflected in the Treant in the other
session

>>> # python session 1
>>> s.tags.add('elm')

>>> # python session 2
>>> s.tags
<Tags(['elm'])>

This is because both objects pull their identifying information from the same place on disk; they store almost nothing
in memory.

Note: File handles are kept alive only as long as needed to serialize or deserialize Treant metadata from the filesystem.

3.2.2 API Reference: Treant

See the Treant API reference for more details.

3.3 Differentiating Treants

Treants can be used to develop “fire-and-forget” analysis routines. Large numbers of Treants can be fed to an analysis
routine, with individual Treants handled according to their characteristics. To make it possible to write code that tailors
its approach according to the Treant it encounters, we can use tags and categories.

3.3.1 Using tags

Tags are individual strings that describe a Treant. Using our Treant sprout as an example, we can add many tags at
once

3.3. Differentiating Treants 9

datreant Documentation, Release 1.0.2

>>> from datreant import Treant
>>> s = Treant('sprout')
>>> s.tags.add('elm', 'mirky', 'misty')
>>> s.tags
<Tags(['elm', 'mirky', 'misty'])>

They can be iterated through as well

>>> for tag in s.tags:
>>> print tag
elm
mirky
misty

Or checked for membership

>>> 'mirky' in s.tags
True

Tags function as sets

Since the tags of a Treant behave as a set, we can do set operations directly, such as subset comparisons:

>>> {'elm', 'misty'} < s.tags
True

unions:

>>> {'moldy', 'misty'} | s.tags
{'elm', 'mirky', 'misty', 'moldy'}

intersections:

>>> {'elm', 'moldy'} & s.tags
{'elm'}

differences:

>>> s.tags - {'moldy', 'misty'}
{'elm', 'mirky'}

or symmetric differences:

>>> s.tags ^ {'moldy', 'misty'}
{u'elm', u'mirky', 'moldy'}

It is also possible to set the tags directly:

>>> s.tags = s.tags | {'moldy', 'misty'}
>>> s.tags
<Tags(['elm', 'mirky', 'misty', 'moldy'])>

API Reference: Tags

See the Tags API reference for more details.

10 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

3.3.2 Using categories

Categories are key-value pairs. They are particularly useful as switches for analysis code. For example, if we have
Treants with different shades of bark (say, “dark” and “light”), we can make a category that reflects this. In this case,
we categorize sprout as “dark”

>>> s.categories['bark'] = 'dark'
>>> s.categories
<Categories({'bark': 'dark'})>

Perhaps we’ve written some analysis code that will take both “dark” and “light” Treants as input but needs to handle
them differently. It can see what variety of Treant it is working with using

>>> s.categories['bark']
'dark'

The keys for categories must be strings, but the values may be strings, numbers (floats, ints), or booleans (True,
False).

Note: None may not be used as a category value since this is used in aggregations (see Coordinating Treants with
Bundles) to indicate keys that are absent.

API Reference: Categories

See the Categories API reference for more details.

3.3.3 Filtering and grouping on tags and categories

Tags and categories are especially useful for filtering and grouping Treants. See Coordinating Treants with Bundles
for the details on how to flexibly do this.

3.4 Filesystem manipulation with Trees and Leaves

A Treant functions as a specially marked directory, containing a .datreant directory possibly with identifying
information inside. What’s a Treant without a .datreant directory? It’s just a Tree.

datreant gives pythonic access to the filesystem by way of Trees and Leaves (directories and files, respectively).
Say our current working directory has two directories and a file

> ls
moe/ larry/ curly.txt

We can use Trees and Leaves directly to manipulate them

>>> import datreant as dtr
>>> t = dtr.Tree('moe')
>>> t
<Tree: 'moe/'>

>>> l = dtr.Leaf('curly.txt')
>>> l
<Leaf: 'curly.txt'>

3.4. Filesystem manipulation with Trees and Leaves 11

datreant Documentation, Release 1.0.2

These objects point to a specific path in the filesystem, which doesn’t necessarily have to exist. Just as with Treants,
more than one instance of a Tree or Leaf can point to the same place.

3.4.1 Working with Trees

Tree objects can be used to introspect downward into their directory structure. Since a Tree is essentially a container
for its own child Trees and Leaves, we can use getitem syntax to dig around

>>> t = dtr.Tree('moe')
>>> t['a/directory/']
<Tree: 'moe/a/directory/'>

>>> t['a/file']
<Leaf: 'moe/a/file'>

Paths that resolve as being inside a Tree give True for membership tests

>>> t['a/file'] in t
True

Note that these items need not exist

>>> t['a/file'].exists
False

in which case whether a Tree or Leaf is returned is dependent on an ending /. We can create directories and empty
files easily enough, though:

>>> adir = t['a/directory/'].make()
>>> adir.exists
True

>>> afile = t['a/file'].make()
>>> afile.exists
True

Note: For accessing directories and files that exist, getitem syntax isn’t sensitive to ending / separators to determine
whether to give a Tree or a Leaf.

If you don’t want to rely on ending / characters when making new directories, we can use treeloc() to guarantee
it:

>>> adir = t.treeloc['a/directory'].make() # will always make a directory

and likewise for files, to be explicit:

>>> afile = t.leafloc['a/file'].make() # will always make a file

Synchronizing Trees

Synchronization of Tree contents can be performed through the sync() method. Synchronization can be performed
both locally and remotely, and is done through the rsync command:

12 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

>>> sequoia = dtr.Tree('sequoia')
>>> oak = dtr.Tree('oak')
>>> sequoia.sync(oak, mode="download") # Sync contents from oak to sequoia
>>> sequoia.sync("/tmp/sequoia", mode="upload") # Sync to a local directory
>>> sequoia.sync("user@host:/directory") # Sync remotely

Note: To be able to sync remotely, it is necessary to have passwordless ssh access (through key file) to the server.

API Reference: Tree

See the Tree API reference for more details.

3.4.2 A Treant is a Tree

The Treant object is a subclass of a Tree, so the above all applies to Treant behavior. Some methods of Trees are
especially useful when working with Treants. One of these is draw

>>> s = dtr.Treant('sprout')
>>> s['a/new/file'].make()
>>> s['a/.hidden/directory/'].make()
>>> s.draw(hidden=True)
sprout/
+-- .datreant/
+-- a/

+-- .hidden/
| +-- directory/
+-- new/

+-- file

which gives a nice ASCII-fied visual of the Tree. We can also obtain a collection of Trees and/or Leaves in the Tree
with globbing

>>> s.glob('a/*')
<View(['.hidden/', 'new/'])>

See Using Views to work with Trees and Leaves collectively for more about the View object, and how it can be used
to manipulate many Trees and Leaves as a single logical unit. More details on how to introspect Trees with Views can
be found in Views from a Tree.

3.4.3 File operations with Leaves

Leaf objects are interfaces to files. At the moment they are most useful as pointers to particular paths in the filesystem,
making it easy to save things like plots or datasets within the Tree they need to go:

>>> import numpy as np
>>> random_array = np.random.randn(1000, 3)
>>> np.save(t['random/array.npy'].makedirs().abspath, random_array)

Or getting things back later:

3.4. Filesystem manipulation with Trees and Leaves 13

datreant Documentation, Release 1.0.2

>>> np.load(t['random/array.npy'].abspath)
array([[1.28609187, -0.08739047, 1.23335427],

[1.85979027, 0.37250825, 0.89576077],
[-0.77038908, -0.02746453, -0.13723022],
...,
[-0.76445797, 0.94284523, 0.29052753],
[-0.44437005, -0.91921603, -0.4978258],
[-0.70563139, -0.62811205, 0.60291534]])

But they can also be used for introspection, such as reading the bytes from a file:

>>> t['about_moe.txt'].read()
'Moe is not a nice person.\n'

API Reference: Leaf

See the Leaf API reference for more details.

3.5 Using Views to work with Trees and Leaves collectively

A View makes it possible to work with arbitrary Trees and Leaves as a single logical unit. It is an immutable, ordered
set of its members.

3.5.1 Building a View and selecting members

Views can be built from a list of paths, existing or not. Taking our working directory with

> ls
moe/ larry/ curly.txt

We can build a View immediately

>>> import datreant as dtr
>>> import glob
>>> v = dtr.View(glob.glob('*'))
>>> v
<View(['moe/', 'larry/', 'curly.txt'])>

And we can get to work using it. Since Views are firstly a collection of members, individual members can be accessed
through indexing and slicing

>>> v[1]
<Tree: 'larry/'>

>>> v[1:]
<View(['larry/', 'curly.txt'])>

But we can also use fancy indexing (which can be useful for getting a re-ordering of members)

>>> v[[2, 0]]
<View(['curly.txt', 'moe/'])>

Or boolean indexing

14 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

>>> v[[True, False, True]]
<View(['moe/', 'curly.txt'])>

As well as indexing by name

>>> v['curly.txt']
<View(['curly.txt'])>

Note that since the name of a file or directory need not be unique, this always returns a View.

3.5.2 Filtering View members

Often we might obtain a View of a set of files and directories and then use the View itself to filter down into the set of
things we actually want. There are a number of convenient ways to do this.

Want only the Trees?

>>> v.membertrees
<View(['moe/', 'larry/'])>

Or only the Leaves?

>>> v.memberleaves
<View(['curly.txt'])>

We can get more granular and filter members using glob patterns on their names:

>>> v.globfilter('*r*')
<View(['larry/', 'curly.txt'])>

And since all these properties and methods return Views, we can stack operations:

>>> v.globfilter('*r*').memberleaves
<View(['curly.txt'])>

3.5.3 Views from a Tree

A common use of a View is to introspect the children of a Tree. If we have a look inside one of our directories

> ls moe/
about_moe.txt more_moe.pdf sprout/

We find two files and a directory. We can get at the files with

>>> moe = v['moe'][0]
>>> moe.leaves()
<View(['about_moe.txt', 'more_moe.pdf'])>

and the directories with

>>> moe.trees()
<View(['sprout/'])>

Both these properties leave out hidden children by default, since hidden files are often hidden to keep them out of the
way of most work. But we can get at these easily, too:

3.5. Using Views to work with Trees and Leaves collectively 15

datreant Documentation, Release 1.0.2

>>> moe.trees(hidden=True)
<View(['.hiding_here/', 'sprout/'])>

Want all the children?

>>> moe.children(hidden=True)
<View(['sprout/', 'about_moe.txt', 'more_moe.pdf', '.hiding_here/'])>

3.5.4 A View is an ordered set

Because a View is a set, adding members that are already present results in no a new View with nothing additional:

>>> v = v + Tree('moe')
>>> v
<View(['moe/', 'larry/', 'curly.txt'])>

But a View does have a sense of order, so we could, for example, meaningfully get a View with the order of members
reversed:

>>> v[::-1]
<View(['curly.txt', 'larry/', 'moe/'])>

Because it is functionally a set, operations between Views work as expected. Making another View with

>>> v2 = dtr.View('moe', 'nonexistent_file.txt')

we can get the union:

>>> v | v2
<View(['moe/', 'larry/', 'curly.txt', 'nonexistent_file.txt'])>

the intersection:

>>> v & v2
<View(['moe/'])>

differences:

>>> v - v2
<View(['larry/', 'curly.txt'])>

>>> v2 - v
<View(['nonexistent_file.txt'])>

or the symmetric difference:

>>> v ^ v2
<View(['curly.txt', 'larry/', 'nonexistent_file.txt'])>

3.5.5 Collective properties and methods of a View

A View is a collection of Trees and Leaves, but it has methods and properties that mirror those of Trees and Leaves
that allow actions on all of its members in aggregate. For example, we can directly get all directories and files within
each member Tree:

16 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

>>> v.children(hidden=True)
<View(['sprout/', 'about_moe.txt', 'more_moe.pdf', '.hiding_here',

'about_larry.txt'])>

Or we could get all children that match a glob pattern:

>>> v.glob('*moe*')
<View(['about_moe.txt', 'more_moe.pdf'])>

Note that this is the equivalent of doing something like:

>>> dtr.View([tree.glob(pattern) for tree in v.membertrees])

In this way, a View functions analogously for Trees and Leaves as a Bundle does for Treants. See Coordinating Treants
with Bundles for more on this theme.

3.5.6 API Reference: View

See the View API reference for more details.

3.6 Coordinating Treants with Bundles

Similar to a View, a Bundle is an immutable, ordered set of Treants that makes it easy to work with them as a single
logical unit. Bundles can be constructed in a variety of ways, but often with a collection of Treants. If our working
directory has a few Treants in it:

> ls
elm/ maple/ oak/ sequoia/

We can make a Bundle with

>>> import datreant as dtr
>>> b = dtr.Bundle('elm', 'maple', 'oak', 'sequoia')
>>> b
<Bundle(['elm', 'maple', 'oak', 'sequoia'])>

Bundles can also be initialized from existing Treant instances, in addition to their paths in the filesystem, so

>>> t = dtr.Treant('elm')
>>> b = dtr.Bundle(t, 'maple', 'oak', 'sequoia')

would work equally well.

3.6.1 Gathering Treants from the filesystem

It can be tedious manually hunting for existing Treants throughout the filesystem. For this reason the discover()
function can do this work for us:

>>> b = dtr.discover('.')
>>> b
<Bundle(['sequoia', 'maple', 'oak', 'elm'])>

3.6. Coordinating Treants with Bundles 17

datreant Documentation, Release 1.0.2

For this simple example all our Treants were in this directory, so it’s not quite as useful. But for a directory structure
that is deep and convoluted perhaps from a project spanning years, discover() lets you get a Bundle of all Treants
in the tree with little effort. You can then filter on tags and categories to get Bundles of the Treants you actually want
to work with.

See the datreant.discover() API reference for more details.

3.6.2 Basic member selection

All the same selection patterns that work for Views (see Building a View and selecting members) work for Bundles.
This includes indexing with integers:

>>> b = dtr.discover()
>>> b[1]
<Treant: 'maple'>

slicing:

>>> b[1:]
<Bundle(['maple', 'oak', 'elm'])>

fancy indexing:

>>> b[[1, 2, 0]]
<Bundle(['maple', 'oak', 'sequoia'])>

boolean indexing:

>>> b[[False, False, True, False]]
<Bundle(['oak'])>

and indexing by Treant name:

>>> b['oak']
<Bundle(['oak'])>

Note that since Treant names need not be unique, indexing by name always yields a Bundle.

3.6.3 Filtering on Treant tags

Treants are more useful than plain Trees because they carry distinguishing characteristics beyond just their path in the
filesystem. Tags are one of these distinguishing features, and Bundles can use them directly to filter their members.

Note: For a refresher on using tags with individual Treants, see Using tags. Everything that applies to using tags with
individual Treants applies to using them in aggregate with Bundles.

The aggregated tags for all members in a Bundle are accessible via datreant.Bundle.tags. Just calling this
property gives a view of the tags present in every member Treant:

>>> b.tags
<AggTags(['plant'])>

But our Treants probably have more than just this one tag. We can get at the tags represented by at least one Treant in
the Bundle with

18 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

>>> b.tags.any
{'building',
'firewood',
'for building',
'furniture',
'huge',
'paper',
'plant',
'shady',
'syrup'}

Since tags function as a set, we get back a set. Likewise we have

>>> b.tags.all
{'plant'}

which we’ve already seen.

Using tag expressions to select members

We can use getitem syntax to query the members of Bundle. For example, giving a single tag like

>>> b.tags['building']
[False, False, True, True]

gives us back a list of booleans. This can be used directly on the Bundle as a boolean index to get back a subselection
of its members:

>>> b[b.tags['building']]
<Bundle(['oak', 'elm'])>

We can also provide multiple tags to match more Treants:

>>> b[b.tags['building', 'furniture']]
<Bundle(['maple', 'oak', 'elm'])>

The above is equivalent to giving a tuple of tags to match, as below:

>>> b[b.tags[('building', 'furniture')]]
<Bundle(['maple', 'oak', 'elm'])>

Using a tuple functions as an “or”-ing of the tags given, in which case the resulting members are those that have at
least one of the tags inside the tuple.

But if we give a list instead, we get:

>>> b[b.tags[['building', 'furniture']]]
<Bundle([])>

. . . something else, in this case nothing. Giving a list functions as an “and”-ing of the tags given inside, so the above
query will only give members that have both ‘building’ and ‘furniture’ as tags. There were none in this case.

Lists and tuples can be nested to build complex and/or selections. In addition, sets can be used to indicate negation
(“not”):

>>> b[b.tags[{'furniture'}]]
<Bundle(['sequoia', 'oak', 'elm'])>

3.6. Coordinating Treants with Bundles 19

datreant Documentation, Release 1.0.2

Putting multiple tags inside a set functions as a negated “and”-ing of the contents:

>>> b[b.tags[{'building', 'furniture'}]]
<Bundle(['sequoia', 'maple', 'oak', 'elm'])>

which is the opposite of the empty Bundle we got when we did the “and”-ing of these tags earlier.

Fuzzy matching for tags

Over the course of a project spanning years, you might add several variations of essentially the same tag to different
Treants. For example, it looks like we might have two different tags that mean the same thing among the Treants in
our Bundle:

>>> b.tags
{'building',
'firewood',
'for building',
'furniture',
'huge',
'paper',
'plant',
'shady',
'syrup'}

Chances are good we meant the same thing when we added ‘building’ and ‘for building’ to these Treants. How can
we filter on these without explicitly including each one in a tag expression?

We can use fuzzy matching:

>>> b.tags.fuzzy('building', scope='any')
('building', 'for building')

which we can use directly as an “or”-ing in a tag expression:

>>> b[b.tags[b.tags.fuzzy('building', scope='any')]]
<Bundle(['oak', 'elm'])>

The threshold for fuzzy matching can be set with the threshold parameter. See the API reference for fuzzy()
for more details on how to use this method.

3.6.4 Grouping with Treant categories

Besides tags, categories are another mechanism for distinguishing Treants from each other. We can access these in
aggregate with a Bundle, but we can also use them to build groupings of members by category value.

Note: For a refresher on using categories with individual Treants, see Using categories. Much of what applies to
using categories with individual Treants applies to using them in aggregate with Bundles.

The aggregated categories for all members in a Bundle are accessible via datreant.Bundle.categories. Just
calling this property gives a view of the categories with keys present in every member Treant:

>>> b.categories
<AggCategories({'age': ['adult', 'young', 'young', 'old'],

(continues on next page)

20 Chapter 3. Contributing

datreant Documentation, Release 1.0.2

(continued from previous page)

'type': ['evergreen', 'deciduous', 'deciduous', 'deciduous'],
'bark': ['fibrous', 'smooth', 'mossy', 'mossy']})>

We see that here, the values are lists, with each element of the list giving the value for each member, in member order.
This is how categories behave when accessing from Bundles, since each member may have a different value for a
given key.

But just as with tags, our Treants probably have more than just the keys ‘age’, ‘type’, and ‘bark’ among their categories.
We can get a dictionary of the categories with each key present among at least one member with

>>> b.categories.any
{'age': ['adult', 'young', 'young', 'old'],
'bark': ['fibrous', 'smooth', 'mossy', 'mossy'],
'health': [None, None, 'good', 'poor'],
'nickname': ['redwood', None, None, None],
'type': ['evergreen', 'deciduous', 'deciduous', 'deciduous']}

Note that for members that lack a given key, the value returned in the corresponding list is None. Since None is not
a valid value for a category, this unambiguously marks the key as being absent for these members.

Likewise we have

>>> b.categories.all
{'age': ['adult', 'young', 'young', 'old'],
'bark': ['fibrous', 'smooth', 'mossy', 'mossy'],
'type': ['evergreen', 'deciduous', 'deciduous', 'deciduous']}

which we’ve already seen.

Accessing and setting values with keys

Consistent with the behavior shown above, when accessing category values in aggregate with keys, what is returned is
a list of values for each member, in member order:

>>> b.categories['age']
['adult', 'young', 'young', 'old']

And if we access a category with a key that isn’t present among all members, None is given for those members in
which it’s missing:

>>> b.categories['health']
[None, None, 'good', 'poor']

If we’re interested in the values corresponding to a number of keys, we can access these all at once with either a list:

>>> b.categories[['health', 'bark']]
[[None, None, 'good', 'poor'], ['fibrous', 'smooth', 'mossy', 'mossy']]

which will give a list with the values for each given key, in order by key. Or with a set:

>>> b.categories[{'health', 'bark'}]
{'bark': ['fibrous', 'smooth', 'mossy', 'mossy'],
'health': [None, None, 'good', 'poor']}

which will give a dictionary, with keys as keys and values as values.

We can also set category values for all members as if we were working with a single member:

3.6. Coordinating Treants with Bundles 21

datreant Documentation, Release 1.0.2

>>> b.categories['height'] = 'tall'
>>> b.categories['height']
['tall', 'tall', 'tall', 'tall']

or we could set the value for each member:

>>> b.categories['height'] = ['really tall', 'middling', 'meh', 'tall']
>>> b.categories['height']
['really tall', 'middling', 'meh', 'tall']

Grouping by value

Since for a given key a Bundle may have members with a variety of values, it can be useful to get subsets of the Bundle
as a function of value for a given key. We can do this using the groupby() method:

>>> b.categories.groupby('type')
{'deciduous': <Bundle(['maple', 'oak', 'elm'])>,
'evergreen': <Bundle(['sequoia'])>}

In grouping by the ‘type’ key, we get back a dictionary with the values present for this key as keys and Bundles giving
the corresponding members as values. We could iterate through this dictionary and apply different operations to each
Bundle based on the value. Or we could extract out only the subset we want, perhaps just the ‘deciduous’ Treants:

>>> b.categories.groupby('type')['deciduous']
<Bundle(['maple', 'oak', 'elm'])>

We can also group by more than one key at once:

>>> b.categories.groupby(['type', 'health'])
{('good', 'deciduous'): <Bundle(['oak'])>,
('poor', 'deciduous'): <Bundle(['elm'])>}

Now the keys of the resulting dictionary are tuples of value combinations for which there are members. The resulting
Bundles don’t include some members since not every member has both the keys ‘type’ and ‘health’.

See the API reference for groupby() for more details on how to use this method.

3.6.5 Operating on members in parallel

Although it’s common to iterate through the members of a Bundle to perform operations on them individually, this
approach can often be put in terms of mapping a function to each member independently. A Bundle has a map method
for exactly this purpose:

>>> b.map(lambda x: (x.name, set(x.tags)))
[('sequoia', {'huge', 'plant'}),
('maple', {'furniture', 'plant', 'syrup'}),
('oak', {'building', 'for building', 'plant'}),
('elm', {'building', 'firewood', 'paper', 'plant', 'shady'})]

This example isn’t the most useful, but the point is that we can apply any function across all members without much
fanfare, with the results returned in a list and in member order.

The map() method also features a processes parameter, and setting this to an integer greater than 1 will use the
multiprocessing module internally to map the function across all members using multiple processes. For this to
work, we have to give our function an actual name so it can be serialized (pickled) by multiprocessing:

22 Chapter 3. Contributing

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

datreant Documentation, Release 1.0.2

>>> def get_tags(treant):
... return (treant.name, set(treant.tags))
>>> b.map(get_tags, processes=2)
[('sequoia', {'huge', 'plant'}),
('maple', {'furniture', 'plant', 'syrup'}),
('oak', {'building', 'for building', 'plant'}),
('elm', {'building', 'firewood', 'paper', 'plant', 'shady'})]

For such a simple function and only four Treants in our Bundle, it’s unlikely that the parallelism gave any advantage
here. But functions that need to do more complicated work with each Treant and the data stored within its tree can
gain much from process parallelism when applied to a Bundle of many Treants.

See the API reference for map() for more details on how to use this method.

3.6.6 API Reference: Bundle

See the Bundle API reference for more details.

3.7 API Reference

This is an overview of the datreant API.

3.7.1 Treants

Treants are the core units of functionality of datreant. They function as specially marked directories with distin-
guishing characteristics. They are designed to be subclassed.

Treant

The class datreant.Treant is the central object of datreant.

class datreant.Treant(treant, categories=None, tags=None)
The Treant: a discoverable Tree with metadata.

treant should be the directory of a new or existing Treant. An existing Treant will be used if a .datreant directory
is found inside. If no .datreant directory is found inside, a new Treant will be created.

A Tree object may also be used in the same way as a directory string.

Parameters

• treant (str or Tree) – Base directory of a new or existing Treant; may also be a Tree
object

• categories (dict) – dictionary with user-defined keys and values; used to give Treants
distinguishing characteristics

• tags (list) – list with user-defined strings; like categories, but useful for adding many
distinguishing descriptors

abspath
Absolute path of self.path.

children(hidden=False)
Return a View of all files and directories in this Tree.

3.7. API Reference 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

datreant Documentation, Release 1.0.2

Parameters hidden (bool) – If True, include hidden files and directories.

Returns A View with files and directories in this Tree as members.

Return type View

draw(depth=None, hidden=False)
Print an ASCII-fied visual of the tree.

Parameters

• depth (int, optional) – Maximum directory depth to display. None indicates no
limit.

• hidden (bool) – If True, show hidden files and directories.

exists
Check existence of this path in filesystem.

glob(pattern)
Return a View of all child Leaves and Trees matching given globbing pattern.

Parameters pattern – globbing pattern to match files and directories with

leafloc
Get Leaf at relative path.

Use with getitem syntax, e.g. .treeloc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing directory, then a ValueError will be raised.

leaves(hidden=False)
Return a View of the files in this Tree.

Parameters hidden (bool) – If True, include hidden files.

Returns A View with files in this Tree as members.

Return type View

loc
Get Tree/Leaf at relative path.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If directory/file does not exist at the given path, then whether a Tree or Leaf is given is determined by the
path semantics, i.e. a trailing separator (“/”).

Using e.g. Tree.loc['some name'] is equivalent to doing Tree['some name']. .loc is in-
cluded for parity with View and Bundle API semantics.

make()
Make the directory if it doesn’t exist. Equivalent to makedirs().

Returns This Tree.

Return type Tree

makedirs()
Make all directories along path that do not currently exist.

Returns This Tree.

Return type Tree

24 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

name
The name of the Treant.

parent
Parent directory for this path.

path
Filesystem path as a pathlib2.Path.

relpath
Relative path of self.path from current working directory.

sync(other, mode=’upload’, compress=True, checksum=True, backup=False, dry=False, in-
clude=None, exclude=None, overwrite=False, rsync_path=’/usr/bin/rsync’)

Synchronize directories using rsync.

Parameters

• other (str or Tree) – Other end of the sync, can be either a path or another Tree.

• mode (str) – Either "upload" if uploading to other, or "download" if downloading
from other

The other options are described in the datreant.rsync.rsync() documentation.

treeloc
Get Tree at relative path.

Use with getitem syntax, e.g. .treeloc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing file, then a ValueError will be raised.

trees(hidden=False)
Return a View of the directories in this Tree.

Parameters hidden (bool) – If True, include hidden directories.

Returns A View with directories in this Tree as members.

Return type View

walk(topdown=True, onerror=None, followlinks=False)
Walk through the contents of the tree.

For each directory in the tree (including the root itself), yields a 3-tuple (dirpath, dirnames, filenames).

Parameters

• topdown (Boolean, optional) – If False, walks directories from the bottom-up.

• onerror (function, optional) – Optional function to be called on error.

• followlinks (Boolean, optional) – If False, excludes symbolic file links.

Returns Wrapped scandir.walk() generator yielding datreant objects

Return type generator

Tags

The class datreant.metadata.Tags is the interface used by Treants to access their tags.

class datreant.metadata.Tags(tree)
Interface to tags.

3.7. API Reference 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

add(*tags)
Add any number of tags to the Treant.

Tags are individual strings that serve to differentiate Treants from one another. Sometimes preferable to
categories.

Parameters tags (str or list) – Tags to add. Must be strings or lists of strings.

clear()
Remove all tags from Treant.

fuzzy(tag, threshold=80)
Get a tuple of existing tags that fuzzily match a given one.

Parameters

• tags (str or list) – Tag or tags to get fuzzy matches for.

• threshold (int) – Lowest match score to return. Setting to 0 will return every tag,
while setting to 100 will return only exact matches.

Returns matches – Tuple of tags that match.

Return type tuple

remove(*tags)
Remove tags from Treant.

Any number of tags can be given as arguments, and these will be deleted.

Parameters tags (iterable) – Tags to delete.

Categories

The class datreant.metadata.Categories is the interface used by Treants to access their categories.

class datreant.metadata.Categories(tree)
Interface to categories.

add(categorydict=None, **categories)
Add any number of categories to the Treant.

Categories are key-value pairs that serve to differentiate Treants from one another. Sometimes preferable
to tags.

If a given category already exists (same key), the value given will replace the value for that category.

Keys must be strings.

Values may be ints, floats, strings, or bools. None as a value will delete the existing value for the key, if
present, and is otherwise not allowed.

Parameters

• categorydict (dict) – Dict of categories to add; keys used as keys, values used as
values.

• categories (dict) – Categories to add. Keyword used as key, value used as value.

clear()
Remove all categories from Treant.

items()
Get category (key, value) tuples.

26 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

datreant Documentation, Release 1.0.2

Returns items – (key, value) tuples; corresponds to dict.items.

Return type list

keys()
Get category keys.

Returns keys – Keys present among categories.

Return type list

remove(*categories)
Remove categories from Treant.

Any number of categories (keys) can be given as arguments, and these keys (with their values) will be
deleted.

Parameters categories (str) – Categories to delete.

values()
Get category values.

Returns values – Values present among categories.

Return type list

3.7.2 Filesystem manipulation

The components of datreant documented here are those designed for working directly with filesystem objects,
namely directories and files.

Tree

The class datreant.Tree is an interface to a directory in the filesystem.

class datreant.Tree(dirpath)
A directory.

abspath
Absolute path of self.path.

children(hidden=False)
Return a View of all files and directories in this Tree.

Parameters hidden (bool) – If True, include hidden files and directories.

Returns A View with files and directories in this Tree as members.

Return type View

draw(depth=None, hidden=False)
Print an ASCII-fied visual of the tree.

Parameters

• depth (int, optional) – Maximum directory depth to display. None indicates no
limit.

• hidden (bool) – If True, show hidden files and directories.

exists
Check existence of this path in filesystem.

3.7. API Reference 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

glob(pattern)
Return a View of all child Leaves and Trees matching given globbing pattern.

Parameters pattern – globbing pattern to match files and directories with

leafloc
Get Leaf at relative path.

Use with getitem syntax, e.g. .treeloc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing directory, then a ValueError will be raised.

leaves(hidden=False)
Return a View of the files in this Tree.

Parameters hidden (bool) – If True, include hidden files.

Returns A View with files in this Tree as members.

Return type View

loc
Get Tree/Leaf at relative path.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If directory/file does not exist at the given path, then whether a Tree or Leaf is given is determined by the
path semantics, i.e. a trailing separator (“/”).

Using e.g. Tree.loc['some name'] is equivalent to doing Tree['some name']. .loc is in-
cluded for parity with View and Bundle API semantics.

make()
Make the directory if it doesn’t exist. Equivalent to makedirs().

Returns This Tree.

Return type Tree

makedirs()
Make all directories along path that do not currently exist.

Returns This Tree.

Return type Tree

name
Basename for this path.

parent
Parent directory for this path.

path
Filesystem path as a pathlib2.Path.

relpath
Relative path of self.path from current working directory.

sync(other, mode=’upload’, compress=True, checksum=True, backup=False, dry=False, in-
clude=None, exclude=None, overwrite=False, rsync_path=’/usr/bin/rsync’)

Synchronize directories using rsync.

Parameters

28 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

• other (str or Tree) – Other end of the sync, can be either a path or another Tree.

• mode (str) – Either "upload" if uploading to other, or "download" if downloading
from other

The other options are described in the datreant.rsync.rsync() documentation.

treeloc
Get Tree at relative path.

Use with getitem syntax, e.g. .treeloc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing file, then a ValueError will be raised.

trees(hidden=False)
Return a View of the directories in this Tree.

Parameters hidden (bool) – If True, include hidden directories.

Returns A View with directories in this Tree as members.

Return type View

walk(topdown=True, onerror=None, followlinks=False)
Walk through the contents of the tree.

For each directory in the tree (including the root itself), yields a 3-tuple (dirpath, dirnames, filenames).

Parameters

• topdown (Boolean, optional) – If False, walks directories from the bottom-up.

• onerror (function, optional) – Optional function to be called on error.

• followlinks (Boolean, optional) – If False, excludes symbolic file links.

Returns Wrapped scandir.walk() generator yielding datreant objects

Return type generator

Leaf

The class datreant.Leaf is an interface to a file in the filesystem.

class datreant.Leaf(filepath)
A file in the filesystem.

abspath
Absolute path.

exists
Check existence of this path in filesystem.

make()
Make the file if it doesn’t exit. Equivalent to touch().

Returns leaf – this leaf

Return type Leaf

makedirs()
Make all directories along path that do not currently exist.

Returns leaf – this leaf

3.7. API Reference 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

Return type Leaf

name
Basename for this path.

parent
Parent directory for this path.

path
Filesystem path as a pathlib2.Path.

read(size=None)
Read file, or up to size in bytes.

Parameters size (int) – extent of the file to read, in bytes

relpath
Relative path from current working directory.

touch()
Make file if it doesn’t exist.

View

The class datreant.View is an ordered set of Trees and Leaves. It allows for convenient operations on its members
as a collective, as well as providing mechanisms for filtering and subselection.

class datreant.View(*members)
An ordered set of Trees and Leaves.

Parameters members (Tree, Leaf, or list) – Trees and/or Leaves to be added, which
may be nested lists of Trees and Leaves. Trees and Leaves can be given as either objects or
paths.

abspaths
List of absolute paths for the members in this View.

children(hidden=False)
Return a View of all files and directories within the member Trees.

Parameters hidden (bool) – If True, include hidden files and directories.

Returns A View giving the files and directories in the member Trees.

Return type View

draw(depth=None, hidden=False)
Print an ASCII-fied visual of all member Trees.

Parameters

• depth (int) – Maximum directory depth to display. None indicates no limit.

• hidden (bool) – If False, do not show hidden files; hidden directories are still shown if
they contain non-hidden files or directories.

exists
List giving existence of each member as a boolean.

glob(pattern)
Return a View of all child Leaves and Trees of members matching given globbing pattern.

Parameters pattern (string) – globbing pattern to match files and directories with

30 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

globfilter(pattern)
Return a View of members that match by name the given globbing pattern.

Parameters pattern (string) – globbing pattern to match member names with

leafloc
Get a View giving Leaf at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing directory for any Tree, then a ValueError will be raised.

leaves(hidden=False)
Return a View of the files within the member Trees.

Parameters hidden (bool) – If True, include hidden files.

Returns A View giving the files in the member Trees.

Return type View

loc
Get a View giving Tree/Leaf at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If directory/file does not exist at the given path, then whether a Tree or Leaf is given is determined by the
path semantics, i.e. a trailing separator (“/”).

make()
Make the Trees and Leaves in this View if they don’t already exist.

Returns This View.

Return type View

map(function, processes=1, **kwargs)
Apply a function to each member, perhaps in parallel.

A pool of processes is created for processes > 1; for example, with 40 members and processes=4,
4 processes will be created, each working on a single member at any given time. When each process
completes work on a member, it grabs another, until no members remain.

kwargs are passed to the given function when applied to each member

Parameters

• function (function) – Function to apply to each member. Must take only a single
Treant instance as input, but may take any number of keyword arguments.

• processes (int) – How many processes to use. If 1, applies function to each member
in member order in serial.

Returns results – List giving the result of the function for each member, in member order. If
the function returns None for each member, then only None is returned instead of a list.

Return type list

memberleaves
A View giving only members that are Leaves (or subclasses).

membertrees
A View giving only members that are Trees (or subclasses).

3.7. API Reference 31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

datreant Documentation, Release 1.0.2

names
List the basenames for the members in this View.

parents()
Return a View of the parent directories for each member.

Because a View functions as an ordered set, and some members of this collection may share a parent, the
View of parents may contain fewer elements than this collection.

relpaths
List of relative paths from the current working directory for the members in this View.

treeloc
Get a View giving Tree at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing file for any Tree, then a ValueError will be raised.

trees(hidden=False)
Return a View of the directories within the member Trees.

Parameters hidden (bool) – If True, include hidden directories.

Returns A View giving the directories in the member Trees.

Return type View

3.7.3 Treant aggregation

These are the API components of datreant for working with multiple Treants at once, and treating them in aggre-
gate.

Bundle

The class datreant.Bundle functions as an ordered set of Treants. It allows common operations on Treants to be
performed in aggregate, but also includes mechanisms for filtering and grouping based on Treant attributes, such as
tags and categories.

Bundles can be created from all Treants found in a directory tree with datreant.discover():

datreant.discover(dirpath=’.’, depth=None, treantdepth=None)
Find all Treants within given directory, recursively.

Parameters

• dirpath (string, Tree) – Directory within which to search for Treants. May also be
an existing Tree.

• depth (int) – Maximum directory depth to tolerate while traversing in search of Treants.
None indicates no depth limit.

• treantdepth (int) – Maximum depth of Treants to tolerate while traversing in search
of Treants. None indicates no Treant depth limit.

Returns found – Bundle of found Treants.

Return type Bundle

They can also be created directly from any number of Treants:

32 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

datreant Documentation, Release 1.0.2

class datreant.Bundle(*treants)
An ordered set of Treants.

Parameters treants (Treant, list) – Treants to be added, which may be nested lists of Tre-
ants. Treants can be given as either objects or paths to directories that contain Treant statefiles.
Glob patterns are also allowed, and all found Treants will be added to the collection.

abspaths
Return a list of absolute member directory paths.

Returns abspaths – List giving the absolute directory path of each member, in order.

Return type list

children(hidden=False)
Return a View of all files and directories within the member Trees.

Parameters hidden (bool) – If True, include hidden files and directories.

Returns A View giving the files and directories in the member Trees.

Return type View

draw(depth=None, hidden=False)
Print an ASCII-fied visual of all member Trees.

Parameters

• depth (int) – Maximum directory depth to display. None indicates no limit.

• hidden (bool) – If False, do not show hidden files; hidden directories are still shown if
they contain non-hidden files or directories.

get(*tags, **categories)
Filter to only Treants which match the defined tags and categories.

If no arguments given, the full Bundle is returned. This method should be thought of as a filtering, with
more values specified giving only those Treants that match.

Parameters

• *tags – Tags to match.

• **categories – Category key, value pairs to match.

Returns All matched Treants.

Return type Bundle

Examples

Doing a get with:

>>> b.get('this')

is equivalent to:

>>> b.tags.filter('this')

Finally, doing:

>>> b.get('this', length=5)

3.7. API Reference 33

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

datreant Documentation, Release 1.0.2

is equivalent to:

>>> b_n = b.tags.filter('this')
>>> b_n.categories.groupby('length')[5.0]

glob(pattern)
Return a View of all child Leaves and Trees of members matching given globbing pattern.

Parameters pattern (string) – globbing pattern to match files and directories with

globfilter(pattern)
Return a Bundle of members that match by name the given globbing pattern.

Parameters pattern (string) – globbing pattern to match member names with

leafloc
Get a View giving Leaf at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing directory for any Tree, then a ValueError will be raised.

leaves(hidden=False)
Return a View of the files within the member Trees.

Parameters hidden (bool) – If True, include hidden files.

Returns A View giving the files in the member Trees.

Return type View

loc
Get a View giving Tree/Leaf at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If directory/file does not exist at the given path, then whether a Tree or Leaf is given is determined by the
path semantics, i.e. a trailing separator (“/”).

map(function, processes=1, **kwargs)
Apply a function to each member, perhaps in parallel.

A pool of processes is created for processes > 1; for example, with 40 members and ‘processes=4’, 4 pro-
cesses will be created, each working on a single member at any given time. When each process completes
work on a member, it grabs another, until no members remain.

kwargs are passed to the given function when applied to each member

Parameters

• function (function) – Function to apply to each member; must take only a single
Treant instance as input, but may take any number of keyword arguments.

• processes (int) – How many processes to use; if 1, applies function to each member
in member order, in sequence, using the current Python process.

Returns results – List giving the result of the function for each member, in member order; if the
function returns None for each member, then only None is returned instead of a list.

Return type list

34 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

datreant Documentation, Release 1.0.2

names
Return a list of member names.

Returns names – List giving the name of each member, in order.

Return type list

parents()
Return a View of the parent directories for each member.

Because a View functions as an ordered set, and some members of this collection may share a parent, the
View of parents may contain fewer elements than this collection.

relpaths
Return a list of relative member directory paths.

Returns names – List giving the relative directory path of each member, in order.

Return type list

treeloc
Get a View giving Tree at path relative to each Tree in collection.

Use with getitem syntax, e.g. .loc['some name']

Allowed inputs are: - A single name - A list or array of names

If the given path resolves to an existing file for any Tree, then a ValueError will be raised.

trees(hidden=False)
Return a View of the directories within the member Trees.

Parameters hidden (bool) – If True, include hidden directories.

Returns A View giving the directories in the member Trees.

Return type View

AggTags

The class datreant.metadata.AggTags is the interface used by Bundles to access their members’ tags.

class datreant.metadata.AggTags(collection)
Interface to aggregated tags.

add(*tags)
Add any number of tags to each Treant in collection.

Parameters tags (str or list) – Tags to add. Must be strings or lists of strings.

all
Set of tags present among all Treants in collection.

any
Set of tags present among at least one Treant in collection.

clear()
Remove all tags from each Treant in collection.

filter(tag)
Filter Treants matching the given tag expression from a Bundle.

Parameters tag (str or list) – Tag or tags to filter Treants.

Returns Bundle of Treants matching the given tag expression.

3.7. API Reference 35

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

datreant Documentation, Release 1.0.2

Return type Bundle

fuzzy(tag, threshold=80, scope=’all’)
Get a tuple of existing tags that fuzzily match a given one.

Parameters

• tag (str or list) – Tag or tags to get fuzzy matches for.

• threshold (int) – Lowest match score to return. Setting to 0 will return every tag,
while setting to 100 will return only exact matches.

• scope ({'all', 'any'}) – Tags to use. ‘all’ will use only tags found within all Tre-
ants in collection, while ‘any’ will use tags found within at least one Treant in collection.

Returns matches – Tuple of tags that match.

Return type tuple

remove(*tags)
Remove tags from each Treant in collection.

Any number of tags can be given as arguments, and these will be deleted.

Parameters tags (iterable) – Tags to delete.

AggCategories

The class datreant.metadata.AggCategories is the interface used by Bundles to access their members’
categories.

class datreant.metadata.AggCategories(collection)
Interface to categories.

add(categorydict=None, **categories)
Add any number of categories to each Treant in collection.

Categories are key-value pairs that serve to differentiate Treants from one another. Sometimes preferable
to tags.

If a given category already exists (same key), the value given will replace the value for that category.

Keys must be strings.

Values may be ints, floats, strings, or bools. None as a value will not the existing value for the key, if
present.

Parameters

• categorydict (dict) – Dict of categories to add; keys used as keys, values used as
values.

• categories – Categories to add. Keyword used as key, value used as value.

all
Get categories common to all Treants in collection.

Returns Categories common to all members.

Return type dict

any
Get categories present among at least one Treant in collection.

Returns All unique Categories among members.

36 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

datreant Documentation, Release 1.0.2

Return type dict

clear()
Remove all categories from all Treants in collection.

groupby(keys)
Return groupings of Treants based on values of Categories.

If a single category is specified by keys (keys is neither a list nor a set of category names), returns a dict
of Bundles whose (new) keys are the values of the category specified by keys; the corresponding Bundles
are groupings of members in the collection having the same category values (for the category specied by
keys).

If keys is a list of keys, returns a dict of Bundles whose (new) keys are tuples of category values. The
corresponding Bundles contain the members in the collection that have the same set of category values (for
the categories specified by keys); members in each Bundle will have all of the category values specified by
the tuple for that Bundle’s key.

Parameters keys (str, list) – Valid key(s) of categories in this collection.

Returns Bundles of members by category values.

Return type dict

keys(scope=’all’)
Get the keys present among Treants in collection.

Parameters scope ({'all', 'any'}) – Keys to return. ‘all’ will return only keys found
within all Treants in the collection, while ‘any’ will return keys found within at least one
Treant in the collection.

Returns keys – Present keys.

Return type list

remove(*categories)
Remove categories from Treant.

Any number of categories (keys) can be given as arguments, and these keys (with their values) will be
deleted.

Parameters categories (str) – Categories to delete.

values(scope=’all’)
Get the category values for all Treants in collection.

Parameters scope ({'all', 'any'}) – Keys to return. ‘all’ will return only keys found
within all Treants in the collection, while ‘any’ will return keys found within at least one
Treant in the collection.

Returns values – A list of values for each Treant in the collection is returned for each key
within the given scope. The value lists are given in the same order as the keys from
AggCategories.keys.

Return type list

3.7.4 Treant synchronization

These are the API components of datreant for synchronizing Treants locally and remotely.

3.7. API Reference 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

datreant Documentation, Release 1.0.2

Sync

The synchronization functionality is provided by the rsync wrapper function. The function is used by the datreant.
Tree.sync() method.

datreant.rsync.rsync(source, dest, compress=True, backup=False, dry=False, checksum=True, in-
clude=None, exclude=None, overwrite=False, rsync_path=’/usr/bin/rsync’)

Wrapper function for rsync. There are some minor differences with the standard rsync behaviour:

• The include option will exclude every other path.

• The exclude statements will take place after the include statements

Parameters

• source (str) – Source directory for the sync

• dest (str) – Dest directory for the sync

• compress (bool) – If True, use gzip compression to reduce the data transfered over the
network

• backup (bool) – If True, pre-existing files are renamed with a “~” extension before they
are replaced

• dry (bool) – If True, do a dry-run. Useful for debugging purposes

• checksum (bool) – Perform a checksum to determine if file content has changed.

• include (str or list) – Paths (wildcards are allowed) to be included. If this option
is used, every other path is excluded

• exclude (str or list) – Paths to be excluded from the copy

• overwrite (bool) – If False, files in dest that are newer than files in source will not be
overwritten

• rsync_path (str) – Path where to find the rsync executable

3.8 Contributing to datreant

datreant is an open-source project, with its development driven by the needs of its users. Anyone is welcome to
contribute to the project, which centers around the datreant GitHub organization.

3.8.1 Development model

datreant follows the development model outlined by Vincent Driessen , with the develop branch being the unstable
focal point for development. The master branch merges from the develop branch only when all tests are passing,
and usually only before a release. In general, master should be usable at all times, while develop may be broken at any
particular moment.

3.8.2 Setting up your development environment

We recommend using virtual environments with virtualenvwrapper. First, clone the repository:

git clone git@github.com:datreant/datreant.git

38 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/datreant
http://nvie.com/posts/a-successful-git-branching-model/
https://pypi.python.org/pypi/virtualenv
http://virtualenvwrapper.readthedocs.org/en/latest/

datreant Documentation, Release 1.0.2

Make a new virtualenv called datreant with:

mkvirtualenv datreant

and make a development installation of datreant with:

cd datreant
pip install -e .

The -e flag will cause pip to call setup with the develop option. This means that any changes on the source code
will immediately be reflected in your virtual environment.

3.8.3 Running the tests locally

As you work on datreant, it’s important to see how your changes affected its expected behavior. With your virtualenv
enabled:

workon datreant

switch to the top-level directory of the package and run:

py.test --cov src/ --pep8 src/

This will run all the tests (inside src/datreant/tests), with coverage and PEP8 checks.

Note that to run the tests you will need to install py.test and the coverage and PEP8 plugins into your virtualenv:

pip install pytest pytest-cov pytest-pep8

3.8. Contributing to datreant 39

https://pypi.python.org/pypi/pytest-cov
https://pypi.python.org/pypi/pytest-pep8

datreant Documentation, Release 1.0.2

40 Chapter 3. Contributing

Index

A
abspath (datreant.Leaf attribute), 29
abspath (datreant.Treant attribute), 23
abspath (datreant.Tree attribute), 27
abspaths (datreant.Bundle attribute), 33
abspaths (datreant.View attribute), 30
add() (datreant.metadata.AggCategories method), 36
add() (datreant.metadata.AggTags method), 35
add() (datreant.metadata.Categories method), 26
add() (datreant.metadata.Tags method), 25
AggCategories (class in datreant.metadata), 36
AggTags (class in datreant.metadata), 35
all (datreant.metadata.AggCategories attribute), 36
all (datreant.metadata.AggTags attribute), 35
any (datreant.metadata.AggCategories attribute), 36
any (datreant.metadata.AggTags attribute), 35

B
Bundle (class in datreant), 32

C
Categories (class in datreant.metadata), 26
children() (datreant.Bundle method), 33
children() (datreant.Treant method), 23
children() (datreant.Tree method), 27
children() (datreant.View method), 30
clear() (datreant.metadata.AggCategories method), 37
clear() (datreant.metadata.AggTags method), 35
clear() (datreant.metadata.Categories method), 26
clear() (datreant.metadata.Tags method), 26

D
discover() (in module datreant), 32
draw() (datreant.Bundle method), 33
draw() (datreant.Treant method), 24
draw() (datreant.Tree method), 27
draw() (datreant.View method), 30

E
exists (datreant.Leaf attribute), 29

exists (datreant.Treant attribute), 24
exists (datreant.Tree attribute), 27
exists (datreant.View attribute), 30

F
filter() (datreant.metadata.AggTags method), 35
fuzzy() (datreant.metadata.AggTags method), 36
fuzzy() (datreant.metadata.Tags method), 26

G
get() (datreant.Bundle method), 33
glob() (datreant.Bundle method), 34
glob() (datreant.Treant method), 24
glob() (datreant.Tree method), 27
glob() (datreant.View method), 30
globfilter() (datreant.Bundle method), 34
globfilter() (datreant.View method), 30
groupby() (datreant.metadata.AggCategories method), 37

I
items() (datreant.metadata.Categories method), 26

K
keys() (datreant.metadata.AggCategories method), 37
keys() (datreant.metadata.Categories method), 27

L
Leaf (class in datreant), 29
leafloc (datreant.Bundle attribute), 34
leafloc (datreant.Treant attribute), 24
leafloc (datreant.Tree attribute), 28
leafloc (datreant.View attribute), 31
leaves() (datreant.Bundle method), 34
leaves() (datreant.Treant method), 24
leaves() (datreant.Tree method), 28
leaves() (datreant.View method), 31
loc (datreant.Bundle attribute), 34
loc (datreant.Treant attribute), 24
loc (datreant.Tree attribute), 28

41

datreant Documentation, Release 1.0.2

loc (datreant.View attribute), 31

M
make() (datreant.Leaf method), 29
make() (datreant.Treant method), 24
make() (datreant.Tree method), 28
make() (datreant.View method), 31
makedirs() (datreant.Leaf method), 29
makedirs() (datreant.Treant method), 24
makedirs() (datreant.Tree method), 28
map() (datreant.Bundle method), 34
map() (datreant.View method), 31
memberleaves (datreant.View attribute), 31
membertrees (datreant.View attribute), 31

N
name (datreant.Leaf attribute), 30
name (datreant.Treant attribute), 24
name (datreant.Tree attribute), 28
names (datreant.Bundle attribute), 34
names (datreant.View attribute), 31

P
parent (datreant.Leaf attribute), 30
parent (datreant.Treant attribute), 25
parent (datreant.Tree attribute), 28
parents() (datreant.Bundle method), 35
parents() (datreant.View method), 32
path (datreant.Leaf attribute), 30
path (datreant.Treant attribute), 25
path (datreant.Tree attribute), 28

R
read() (datreant.Leaf method), 30
relpath (datreant.Leaf attribute), 30
relpath (datreant.Treant attribute), 25
relpath (datreant.Tree attribute), 28
relpaths (datreant.Bundle attribute), 35
relpaths (datreant.View attribute), 32
remove() (datreant.metadata.AggCategories method), 37
remove() (datreant.metadata.AggTags method), 36
remove() (datreant.metadata.Categories method), 27
remove() (datreant.metadata.Tags method), 26
rsync() (in module datreant.rsync), 38

S
sync() (datreant.Treant method), 25
sync() (datreant.Tree method), 28

T
Tags (class in datreant.metadata), 25
touch() (datreant.Leaf method), 30
Treant (class in datreant), 23

Tree (class in datreant), 27
treeloc (datreant.Bundle attribute), 35
treeloc (datreant.Treant attribute), 25
treeloc (datreant.Tree attribute), 29
treeloc (datreant.View attribute), 32
trees() (datreant.Bundle method), 35
trees() (datreant.Treant method), 25
trees() (datreant.Tree method), 29
trees() (datreant.View method), 32

V
values() (datreant.metadata.AggCategories method), 37
values() (datreant.metadata.Categories method), 27
View (class in datreant), 30

W
walk() (datreant.Treant method), 25
walk() (datreant.Tree method), 29

42 Index

	Stay organized
	Getting datreant
	Contributing

