

MDSynthesis: a persistence engine for molecular dynamics data

Although the raw data for any study involving molecular dynamics simulations are
the full trajectories themselves, often we are most interested in
lower-dimensional measures of what is happening. These measures may be as simple
as the distance between two specific atoms, or as complex as the percentage of
contacts relative to some native structure. Some measures may even be
comparisons of two or more trajectories against each other. In any case, it may
be time-consuming to obtain these lower-dimensional intermediate data, and so
it is useful to store them.

Stay organized

MDSynthesis is designed to perform the logistics of medium-to-large-scale
analysis of many trajectories, individually or as entire groups. It is intended
to allow the scientist to operate at a high level when working with the data,
while letting MDSynthesis handle the details of storing and recalling this
data.

In other words, MDSynthesis lets the computer do the boring work of keeping
track of where things are and how they are stored.

Efficiently store intermediate data from individual simulations for easy recall

For a given simulation trajectory, MDSynthesis gives an interface (the Sim
object) to the simulation data itself through MDAnalysis [http://mdanalysis.googlecode.com]. Data structures
generated from raw trajectories (pandas objects, numpy arrays, or any pure
python structure) can then be stored and easily recalled later. Under the hood,
datasets are stored in the efficient HDF5 format when possible.

Collect aggregated data and keep track of it, too

Sim objects can be gathered into arbitrary collections with
Group objects. Groups can store datasets obtained from these
collections, and can even contain other Groups as members.

Query for simulation results instead of manually hunting for them

Note

This feature is planned, but not yet present in the codebase.

Sim and Group objects persistently store their data
to disk automatically, but it can be tedious to navigate around the filesystem
to recall them later. The Coordinator object gives a
single interface for querying all Sim and Group
objects it is made aware of, allowing retrieval of specific datasets with a
single line of code.

Getting MDSynthesis

We have yet to make an official release, but you can get the current state
of the codebase from the master branch on GitHub [https://github.com/Becksteinlab/MDSynthesis].

See the installation instructions to set it up.

Dependencies

	MDAnalysis: 0.9.1 or higher

	pandas: 0.16.1 or higher

	PyTables: 3.2.0 or higher

	h5py: 2.5.0 or higher

	scandir: 1.0 or higher

Contributing

This project is still under heavy development, and there are certainly rough
edges and bugs. Issues and pull requests welcome!

Documentation

	Installation

	Datasets and Containers

	Using Sims to dissect trajectories

	Leveraging Groups for aggregate data

	Differentiating Containers

	Query and high-level control with Coordinators

Misc

	Frequently Asked Questions

Installation

There are no official releases of MDSynthesis yet, but the master
branch on GitHub gives the most current state of the package.

First install the dependencies. Since MDSynthesis uses HDF5 as the file format
of choice for persistence, you will need to install the libraries either using
your package manager or manually.

On Ubuntu 14.04 this will be

apt-get install libhdf5-serial-1.8.4 libhdf5-serial-dev

and on Arch Linux

pacman -S hdf5

PyTables can be particularly picky, and it often fails to obtain its own
dependencies. It is best to first install PyTables’ dependencies explicitly

pip install numpy numexpr Cython

Then install PyTables and everything else

pip install tables
pip install pandas h5py MDAnalysis scandir

Then clone the repository and switch to the master branch

git clone git@github.com:dotsdl/MDSynthesis.git
cd MDSynthesis
git checkout master

Installation of the packages is as simple as

python setup.py build
python setup.py install

This installs MDSynthesis in the system wide python directory; this may
require administrative privileges.

It is also possible to use --prefix, --home, or --user options for
setup.py to install in a different (probably your private) python directory
hierarchy. python setup.py install --help should show you your options.

Datasets and Containers

MDSynthesis is not an analysis code. On its own, it does not produce output
data given raw simulation data as input. Its scope is limited to the boring
but tedious task of data management and storage. It is intended to bring
value to analysis results by making them easily accessible now and later.

As such, the basic functionality of MDSynthesis is condensed into only two
objects, sometimes referred to as Containers in the documentation. These are
the Sim and Group objects.

In brief, a Sim is designed to manage and give access to the data corresponding
to a single simulation (the raw trajectory(s), as well as analysis results); a
Group gives access to any number of Sim or Group objects it has as
members (including perhaps itself), and can store analysis results that pertain
to these members collectively. Both types of Container store their underlying
data persistently to disk on the fly. The file locking needed for each
transaction is handled automatically, so more than one python process can be
working with any number of instances of the same Container at the same time.

Warning

File locking is generally process safe, but not thread safe. Don’t
use multithreading and try to modify Container elements at the
same time. Multiprocessing, however, should work just fine.

Persistence as a feature

Containers store their data as directory structures in the file system. Generating
a new Sim, for example, with the following

>>> # python session 1
>>> import mdsynthesis as mds
>>> s = mds.Sim('marklar')

creates a directory called marklar in the current working directory. It contains
a single file at the moment

> # shell
> ls marklar
Sim.2b4b5800-48a7-4814-ba6d-1e631a09a199.h5

The name of this file includes the type of Container (Sim) it corresponds
to, as well as the uuid of the Container, which is its unique identifier.
This is the state file containing all the information needed to regenerate an
identical instance of this Sim. In fact, we can open a separate python
session (go ahead!) and regenerate this Sim immediately there

>>> # python session 2
>>> import mdsynthesis as mds
>>> s = mds.Sim('marklar')

Making a modification to the Sim in one session, perhaps by adding a tag,
will be reflected in the Sim in the other session

>>> # python session 1
>>> s.tags.add('TIP4P')

>>> # python session 2
>>> s.tags
<Tags(['TIP4P'])>

This is because both objects pull their identifying information from the same
file on disk; they store almost nothing in memory.

Note

The uuid of the Sim in this example will certainly differ from
any Sims you generate. This is used to differentiate Sims
from each other. Unexpected and broken behavior will result from
changing the names of state files!

Storing arbitrary datasets

More on things like tags later, but we really care about storing (potentially
large and time consuming to produce) datasets. Using our Sim marklar
as the example here, say we have generated a numpy array of dimension
(10^6, 3) that gives the minimum distance between the sidechains of three
residues with those of a fourth for each frame in a trajectory

>>> a.shape
(1000000, 3)

We can store this easily

>>> s.data.add('distances', a)
>>> s.data
<Data(['distances'])>

and recall it

>>> s.data['distances'].shape
(1000000, 3)

Looking at the contents of the directory marklar, we see it has a new
subdirectory corresponding to the name of our stored dataset

> # shell
> ls marklar
distances Sim.h5

which has its own contents

> ls marklar/distances
npData.h5

This is the data we stored, serialized to disk in the efficient HDF5 [http://www.hdfgroup.org/HDF5/] data format. Containers will also
store pandas [http://pandas.pydata.org/] objects using this format.
For other data structures, the Container will pickle them if it can.

Datasets can be nested however you like. For example, say we had several
pandas DataFrames each giving the distance with time of each cation in the
simulation with respect to some residue of interest on our protein. We
could just as well make it clear to ourselves that these are all similar
datasets by grouping them together

>>> s.data.add('cations/residue1', df1)
>>> s.data.add('cations/residue2', df2)
>>> # we can also use setitem syntax
>>> s.data['cations/residue3'] = df3
>>> s.data
<Data(['cations/residue1', 'cations/residue2', cations/residue3',
 'distances'])>

and their locations in the filesystem reflect this structure.

Minimal blobs

Individual datasets get their own place in the filesystem instead of all being
shoved into a single file on disk. This is by design, as it generally means
better performance since this means less waiting for file locks to release from
other Container instances. Also, it gives a space to put other files related to
the dataset itself, such as figures produced from it.

You can get the location on disk of a dataset with

>>> s.data.locate('cations/residue1')
'/home/bob/marklar/cations/residue1'

which is particularly useful for outputting figures.

Another advantage of organizing Containers at the filesystem level is that
datasets can be handled at the filesystem level. Removing a dataset with a

> # shell
> rm -r marklar/cations/residue2

is immediately reflected by the Container

>>> s.data
<Data(['cations/residue1', 'cations/residue3', 'distances'])>

Datasets can likewise be moved within the Container’s directory tree and they
will still be found, with names matching their location relative to the state
file.

Reference: Data

The class mdsynthesis.core.aggregators.Data is the interface used
by Containers to access their stored datasets. It is not intended to be used
on its own, but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Data(container, containerfile, logger)

	Interface to stored data.

	
add(handle, *args, **kwargs)

	Store data in Container.

A data instance can be a pandas object (Series, DataFrame, Panel),
a numpy array, or a pickleable python object. If the dataset doesn’t
exist, it is added. If a dataset already exists for the given handle,
it is replaced.

	Arguments

	
	handle

	name given to data; needed for retrieval

	data

	data structure to store

	
append(handle, *args, **kwargs)

	Append rows to an existing dataset.

The object must be of the same pandas class (Series, DataFrame, Panel)
as the existing dataset, and it must have exactly the same columns
(names included).

	Arguments

	
	handle

	name of data to append to

	data

	data to append

	
locate(handle)

	Get directory location for a stored dataset.

	Arguments

	
	handle

	name of data to retrieve location of

	Returns

	
	datadir

	absolute path to directory containing stored data

	
make_filepath(handle, filename)

	Return a full path for a file stored in a data directory, whether
the file exists or not.

This is useful if preparing plots or other files derived from the
dataset, since these can be stored with the data in its own directory.
This method does the small but annoying work of generating a full path
for the file.

This method doesn’t care whether or not the path exists; it simply
returns the path it’s asked to build.

	Arguments

	
	handle

	name of dataset file corresponds to

	filename

	filename of file

	Returns

	
	filepath

	absolute path for file

	
remove(handle, **kwargs)

	Remove a dataset, or some subset of a dataset.

Note: in the case the whole dataset is removed, the directory
containing the dataset file (Data.h5) will NOT be removed if it
still contains file(s) after the removal of the dataset file.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole
dataset can be removed using keywords such as start and stop for
ranges of rows, and columns for selected columns.

	Arguments

	
	handle

	name of dataset to delete

	Keywords

	
	where

	conditions for what rows/columns to remove

	start

	row number to start selection

	stop

	row number to stop selection

	columns

	columns to remove

	
retrieve(handle, *args, **kwargs)

	Retrieve stored data.

The stored data structure is read from disk and returned.

If dataset doesn’t exist, None is returned.

For pandas objects (Series, DataFrame, or Panel) subsets of the whole
dataset can be returned using keywords such as start and stop for
ranges of rows, and columns for selected columns.

Also for pandas objects, the where keyword takes a string as input
and can be used to filter out rows and columns without loading the full
object into memory. For example, given a DataFrame with handle ‘mydata’
with columns (A, B, C, D), one could return all rows for columns A and
C for which column D is greater than .3 with:

retrieve('mydata', where='columns=[A,C] & D > .3')

Or, if we wanted all rows with index = 3 (there could be more than
one):

retrieve('mydata', where='index = 3')

See :meth:pandas.HDFStore.select() for more information.

	Arguments

	
	handle

	name of data to retrieve

	Keywords

	
	where

	conditions for what rows/columns to return

	start

	row number to start selection

	stop

	row number to stop selection

	columns

	list of columns to return; all columns returned by default

	iterator

	if True, return an iterator [False]

	chunksize

	number of rows to include in iteration; implies
iterator=True

	Returns

	
	data

	stored data; None if nonexistent

Using Sims to dissect trajectories

Sim objects are designed to store datasets that are obtained from a single
simulation, and they give a direct interface to trajectory data by way of the
MDAnalysis [http://mdanalysis.googlecode.com] Universe object.

To generate a Sim from scratch, we need only give it a name. This will be used
to distinguish the Sim from others, though it need not be unique. We can
also give it a topology and/or trajectory files as we would to an MDAnalysis
Universe

>>> from mdsynthesis import Sim
>>> s = Sim('scruffy', universe=['path/to/topology', 'path/to/trajectory'])

This will create a directory scruffy that contains a single file
(Sim.<uuid>.h5). That file is a persistent representation of the Sim on disk.
We can access trajectory data by way of

>>> s.universe
<Universe with 47681 atoms>

The Sim can also store selections by giving the usual inputs to
Universe.selectAtoms

>>> s.selections.add('backbone', 'name CA', 'name N', 'name C')

And the AtomGroup can be conveniently obtained with

>>> s.selections['backbone']
<AtomGroup with 642 atoms>

Note

Only selection strings are stored, not the resulting atoms of those
selections. This means that if the topology of the Universe is
replaced or altered, the AtomGroup returned by a particular
selection may change.

Multiple Universes

Often it is necessary to post-process a simulation trajectory to get it into a
useful form for analysis. This may involve coordinate transformations that
center on a particular set of atoms or fit to a structure, removal of water,
skipping of frames, etc. This can mean that for a given simulation multiple
versions of the raw trajectory may be needed.

For this reason, a Sim can store multiple Universe definitions. To add
a definition, we need a topology and a trajectory file

>>> s.universes.add('anotherU', 'path/to/topology', 'path/to/trajectory')
>>> s.universes
<Universes(['anotherU', 'main'])>

and we can make this the active Universe with

>>> s.universes['anotherU']
>>> s
<Sim: 'scruffy' | active universe: 'anotherU'>

Only a single Universe may be active at a time. Atom selections that are
stored correspond to the currently active Universe, since different
selection strings may be required to achieve the same selection under a
different Universe definition. For convenience, we can copy the selections
corresponding to another Universe to the active Universe with

>>> s.selections.copy('main')

Need two Universe definitions to be active at the same time? Re-generate a
second Sim instance from its representation on disk and activate the desired
Universe.

Resnums can also be stored

Depending on the simulation package used, it may not be possible to have the
resids of the protein match those given in, say, the canonical PDB structure.
This can make selections by resid cumbersome at best. For this reason, residues
can also be assigned resnums.

For example, say the resids for the protein in our Universe range from 1 to 214,
but they should actually go from 10 to 223. If we can’t change the topology to reflect
this, we could set the resnums for these residues to the canonical values

>>> prot = s.universe.selectAtoms('protein')
>>> prot.residues.set_resnum(prot.residues.resids() + 9)
>>> prot.residues.resnums()
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
 218, 219, 220, 221, 222, 223])

We can now select residue 95 from the PDB structure with

>>> s.universe.selectAtoms('protein and resnum 95')

and we might save selections using resnums as well. However, resnums aren’t
stored in the topology, so to avoid having to reset resnums manually each time
we load the Universe, we can just store the resnum definition with

>>> s.universes.resnums('main', s.universe.residues.resnums())

and the resnum definition will be applied to the Universe both now and every
time it is activated.

Reference: Sim

	
class mdsynthesis.Sim(sim, universe=None, uname='main', location='.', coordinator=None, categories=None, tags=None)

	The Sim object is an interface to data for single simulations.

Generate a new or regenerate an existing (on disk) Sim object.

	Required arguments

	
	sim

	if generating a new Sim, the desired name to give it;
if regenerating an existing Sim, string giving the path
to the directory containing the Sim object’s state file

	Optional arguments when generating a new Sim

	
	uname

	desired name to associate with universe; this universe
will be made the default (can always be changed later)

	universe

	arguments usually given to an MDAnalysis Universe
that defines the topology and trajectory of the atoms

	location

	directory to place Sim object; default is the current directory

	coordinator

	directory of the Coordinator to associate with the Sim; if the
Coordinator does not exist, it is created; if None, the Sim
will not associate with any Coordinator

	categories

	dictionary with user-defined keys and values; used to give Sims
distinguishing characteristics

	tags

	list with user-defined values; like categories, but useful for
adding many distinguishing descriptors

	Note: optional arguments are ignored when regenerating an existing

	Sim

	
basedir

	Absolute path to the Container’s base directory.

This is a convenience property; the same result can be obtained by
joining :attr:location and :attr:name.

	
categories

	The categories of the Container.

Categories are user-added key-value pairs that can be used to and
distinguish Containers from one another through Coordinator or Group
queries. They can also be useful as flags for external code to
determine how to handle the Container.

	
containertype

	The type of the Container.

	
coordinators

	The locations of the associated Coordinators.

Change this to associate the Container with an existing
or new Coordinator(s).

	
data

	The data of the Container.

Data are user-generated pandas objects (e.g. Series, DataFrames), numpy
arrays, or any pickleable python object that are stored in the
Container for easy recall later. Each data instance is given its own
directory in the Container’s tree.

	
location

	The location of the Container.

Setting the location to a new path physically moves the Container to
the given location. This only works if the new location is an empty or
nonexistent directory.

	
name

	The name of the Container.

The name of a Container need not be unique with respect to other
Containers, but is used as part of Container’s displayed
representation.

	
selections

	Stored atom selections for the active universe.

Useful atom selections can be stored for the active universe and
recalled later. Selections are stored separately for each defined
universe, since the same selection may require a different selection
string for different universes.

	
tags

	The tags of the Container.

Tags are user-added strings that can be used to and distinguish
Containers from one another through Coordinator or Group queries.
They can also be useful as flags for external code to determine
how to handle the Container.

	
universe

	The active universe of the Sim.

Universes are interfaces to raw simulation data. The Sim can store
multiple universe definitions corresponding to different versions
of the same simulation output (e.g. post-processed trajectories derived
from the same raw trajectory). The Sim has at most one universe
definition that is “active” at one time, with stored selections for
this universe directly available via Sim.selections.

To have more than one universe available as “active” at the same time,
generate as many instances of the Sim object from the same statefile on
disk as needed, and make a universe active for each one.

	
universes

	Manage the defined universes of the Sim.

Universes are interfaces to raw simulation data. The Sim can store
multiple universe definitions corresponding to different versions
of the same simulation output (e.g. post-processed trajectories derived
from the same raw trajectory). The Sim has at most one universe
definition that is “active” at one time, with stored selections for
this universe directly available via Sim.selections.

The Sim can also store a preference for a “default” universe, which is
activated on a call to Sim.universe when no other universe is
active.

	
uuid

	Get Container uuid.

A Container’s uuid is used by other Containers to identify it. The uuid
is given in the Container’s state file name for fast filesystem
searching. For example, a Sim object with state file:

'Sim.7dd9305a-d7d9-4a7b-b513-adf5f4205e09.h5'

has uuid:

'7dd9305a-d7d9-4a7b-b513-adf5f4205e09'

Changing this string will alter the Container’s uuid. This is not
generally recommended.

	Returns

	
	uuid

	unique identifier string for this Container

Reference: Universes

The class mdsynthesis.core.aggregators.Universes is the interface used
by a Sim to manage Universe definitions. It is not intended to be used
on its own, but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Universes(container, containerfile, logger)

	Interface to universes.

	
activate(handle=None)

	Make the selected universe active.

Only one universe definition can be active in a Sim at one time. The
active universe can be accessed from Sim.universe. Stored
selections for the active universe can be accessed as items in
Sim.selections.

If no handle given, the default universe is loaded.

If a resnum definition exists for the universe, it is applied.

	Arguments

	
	handle

	given name for selecting the universe; if None, default
universe selected

	
add(handle, topology, *trajectory)

	Add a universe definition to the Sim object.

A universe is an MDAnalysis object that gives access to the details
of a simulation trajectory. A Sim object can contain multiple universe
definitions (topology and trajectory pairs), since it is often
convenient to have different post-processed versions of the same
raw trajectory.

Using an existing universe handle will replace the topology and
trajectory for that definition; selections for that universe will be
retained.

If there is no current default universe, then the added universe will
become the default.

	Arguments

	
	handle

	given name for selecting the universe

	topology

	path to the topology file

	trajectory

	path to the trajectory file; multiple files may be given
and these will be used in order as frames for the trajectory

	
current()

	Return the name of the currently active universe.

	Returns

	
	handle

	name of currently active universe

	
deactivate()

	Deactivate the current universe.

Deactivating the current universe may be necessary to conserve
memory, since the universe can then be garbage collected.

	
default(handle=None)

	Mark the selected universe as the default, or get the default universe.

The default universe is loaded on calls to Sim.universe or
Sim.selections when no other universe is attached.

If no handle given, returns the current default universe.

	Arguments

	
	handle

	given name for selecting the universe; if None, default
universe is unchanged

	Returns

	
	default

	handle of the default universe

	
define(handle, pathtype='abspath')

	Get the stored path to the topology and trajectory used for the
specified universe.

	Note: Does no checking as to whether these paths are valid. To

	check this, try activating the universe.

	Arguments

	
	handle

	name of universe to get definition for

	Keywords

	
	pathtype

	type of path to return; ‘abspath’ gives an absolute path,
‘relCont’ gives a path relative to the Sim’s state file

	Returns

	
	topology

	path to the topology file

	trajectory

	list of paths to trajectory files

	
remove(*handle)

	Remove a universe definition.

Also removes any selections associated with the universe.

	Arguments

	
	handle

	name of universe(s) to delete

	
resnums(handle, resnums)

	Define resnums for the given universe.

Resnums are useful for referring to residues by their canonical resid,
for instance that stored in the PDB. By giving a resnum definition
for the universe, this definition will be applied to the universe
on activation.

Will overwrite existing resnum definition if it exists.

	Arguments

	
	handle

	name of universe to apply resnums to

	resnums

	list giving the resnum for each residue in the topology, in
atom index order; giving None will delete resnum definition

Reference: Selections

The class mdsynthesis.core.aggregators.Selections is the interface
used by a Sim to access its stored selections. It is not intended to be
used on its own, but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Selections(container, containerfile, logger)

	Selection manager for Sims.

Selections are accessible as items using their handles. Each time they are
called, they are regenerated from the universe that is currently active. In
this way, changes in the universe topology are reflected in the selections.

	
add(handle, *selection)

	Add an atom selection for the attached universe.

AtomGroups are needed to obtain useful information from raw coordinate
data. It is useful to store AtomGroup selections for later use, since
they can be complex and atom order may matter.

If a selection with the given handle already exists, it is replaced.

	Arguments

	
	handle

	name to use for the selection

	selection

	selection string; multiple strings may be given and their
order will be preserved, which is useful for e.g. structural
alignments

	
asAtomGroup(handle)

	Get AtomGroup from active universe from the given named selection.

If named selection doesn’t exist, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] raised.

	Arguments

	
	handle

	name of selection to return as an AtomGroup

	Returns

	
	AtomGroup

	the named selection as an AtomGroup of the active universe

	
copy(universe)

	Copy defined selections of another universe to the active universe.

	Arguments

	
	universe

	name of universe definition to copy selections from

	
define(handle)

	Get selection definition for given handle and the active universe.

If named selection doesn’t exist, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] raised.

	Arguments

	
	handle

	name of selection to get definition of

	Returns

	
	definition

	list of strings defining the atom selection

	
keys()

	Return a list of all selection handles.

	
remove(*handle)

	Remove an atom selection for the attached universe.

If named selection doesn’t exist, KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] raised.

	Arguments

	
	handle

	name of selection(s) to remove

Leveraging Groups for aggregate data

Group objects can keep track of any number of Sim and Group objects
it counts as members, and it can store datasets derived from these objects.
Just as a Sim manages data obtained from a single simulation, a Group
is designed to manage data obtained from a collection of Sim or Group
objects in aggregate.

As with a Sim, to generate a Group from scratch, we need only give it a
name. We can also give any number of existing Sim or Group objects to
add them as members

>>> from mdsynthesis import Group
>>> g = Group('gruffy', members=[s1, s2, s3, g4, g5])
>>> g
<Group: 'gruffy' | 5 Members: 3 Sim, 2 Group>

This will create a directory gruffy that contains a single file
(Group.<uuid>.h5). That file is a persistent representation of the Group on
disk. We can access its members with

>>> g.members
<Members(['marklar', 'scruffy', 'fluffy', 'buffy', 'gorp'])>
>>> g.members[2]
<Sim: 'fluffy'>

and we can slice, too

>>> g.members[2:]
[<Sim: 'fluffy'>, <Group: 'buffy'>, <Group: 'gorp'>]

Note

Members are generated from their state files on disk upon access.
This means that for a Group with hundreds of members, there will
be a delay when trying to access them all at once.

A Group can even be a member of itself

>>> g.members.add(g)
>>> g
<Group: 'gruffy' | 6 Members: 3 Sim, 3 Group>
>>> g.members[-1]
<Group: 'gruffy' | 6 Members: 3 Sim, 3 Group>
>>> g.members[-1].members[-1]
<Group: 'gruffy' | 6 Members: 3 Sim, 3 Group>

As a technical aside, note that a Group returned as a member of itself
is not the same object in memory as the Group that returned it. They are
two different instances of the same Group

>>> g2 = g.members[-1]
>>> g2 is g
False

But since they pull their state from the same file on disk, they will reflect
the same stored information at all times

>>> g.tags.add('kinases')
>>> g2.tags
<Tags(['kinases'])>

Reference: Group

	
class mdsynthesis.Group(group, members=None, location='.', coordinator=None, categories=None, tags=None)

	The Group object is a collection of Sims and Groups.

Generate a new or regenerate an existing (on disk) Group object.

	Required Arguments

	
	group

	if generating a new Group, the desired name to give it;
if regenerating an existing Group, string giving the path
to the directory containing the Group object’s state file

	Optional arguments when generating a new Group

	
	members

	a list of Sims and/or Groups to immediately add as members

	location

	directory to place Group object; default is the current
directory

	coordinator

	directory of the Coordinator to associate with this object; if
the Coordinator does not exist, it is created; if None, the
Sim will not associate with any Coordinator

	categories

	dictionary with user-defined keys and values; used to give
Groups distinguishing characteristics

	tags

	list with user-defined values; like categories, but useful for
adding many distinguishing descriptors

	Note: optional arguments are ignored when regenerating an existing

	Group

	
basedir

	Absolute path to the Container’s base directory.

This is a convenience property; the same result can be obtained by
joining :attr:location and :attr:name.

	
categories

	The categories of the Container.

Categories are user-added key-value pairs that can be used to and
distinguish Containers from one another through Coordinator or Group
queries. They can also be useful as flags for external code to
determine how to handle the Container.

	
containertype

	The type of the Container.

	
coordinators

	The locations of the associated Coordinators.

Change this to associate the Container with an existing
or new Coordinator(s).

	
data

	The data of the Container.

Data are user-generated pandas objects (e.g. Series, DataFrames), numpy
arrays, or any pickleable python object that are stored in the
Container for easy recall later. Each data instance is given its own
directory in the Container’s tree.

	
location

	The location of the Container.

Setting the location to a new path physically moves the Container to
the given location. This only works if the new location is an empty or
nonexistent directory.

	
members

	The members of the Group.

A Group is useful as an interface to collections of Containers, and
they allow direct access to each member of that collection. Often
a Group is used to store datasets derived from this collection as
an aggregate.

Queries can also be made on the Group’s members to return a
subselection of the members based on some search criteria. This can be
useful to define new Groups from members of existing ones.

	
name

	The name of the Container.

The name of a Container need not be unique with respect to other
Containers, but is used as part of Container’s displayed
representation.

	
tags

	The tags of the Container.

Tags are user-added strings that can be used to and distinguish
Containers from one another through Coordinator or Group queries.
They can also be useful as flags for external code to determine
how to handle the Container.

	
uuid

	Get Container uuid.

A Container’s uuid is used by other Containers to identify it. The uuid
is given in the Container’s state file name for fast filesystem
searching. For example, a Sim object with state file:

'Sim.7dd9305a-d7d9-4a7b-b513-adf5f4205e09.h5'

has uuid:

'7dd9305a-d7d9-4a7b-b513-adf5f4205e09'

Changing this string will alter the Container’s uuid. This is not
generally recommended.

	Returns

	
	uuid

	unique identifier string for this Container

Reference: Members

The class mdsynthesis.core.aggregators.Members is the interface used
by a Group to manage its members. It is not intended to be used on its own,
but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Members(container, containerfile, logger)

	Member manager for Groups.

	
add(*containers)

	Add any number of members to this collection.

	Arguments

	
	containers

	Sims and/or Groups to be added; may be a list of Sims and/or
Groups; Sims or Groups can be given as either objects or paths
to directories that contain object statefiles

	
containertypes

	Return a list of member containertypes.

	
data

	The data of the Container.

Data are user-generated pandas objects (e.g. Series, DataFrames), numpy
arrays, or any pickleable python object that are stored in the
Container for easy recall later. Each data instance is given its own
directory in the Container’s tree.

	
names

	Return a list of member names.

Members that can’t be found will have name None.

	Returns

	
	names

	list giving the name of each member, in order;
members that are missing will have name None

	
remove(*members, **kwargs)

	Remove any number of members from the Group.

	Arguments

	
	members

	instances or indices of the members to remove

	Keywords

	
	all

	When True, remove all members [False]

	
uuids

	Return a list of member uuids.

	Returns

	
	uuids

	list giving the uuid of each member, in order

Differentiating Containers

Sims and Groups can be used to develop “fire-and-forget” analysis
routines. Large numbers of Containers can be fed to an analysis code to give
that code access to all trajectory and intermediate data, with individual
Containers handled according to their characteristics. To make it possible to
write code that tailors its approach according to the Container it encounters,
we can use tags and categories.

Tags are individual strings that describe a Container. Using our Sim
marklar as an example, we can add many tags at once

>>> from mdsynthesis import Sim
>>> s = Sim('marklar')
>>> s.tags.add('TIP4P', 'ADK', 'kinases', 'globular', 'equilibrium')
>>> s.tags
<Tags(['ADK', 'TIP4P', 'equilibrium', 'globular', 'kinases'])>

They can be iterated through as well

>>> for tag in s.tags:
>>> print tag
kinases
globular
ADK
TIP4P
equilibrium

Categories are key-value pairs of strings. They are particularly useful as
switches for analysis code. For example, if we are simulating two different
states of a protein (say, “open” and “closed”), we can make a category that
reflects this. In this case, we categorize marklar as “open”

>>> s.categories['state'] = 'open'
>>> s.categories
<Categories({'state': 'open'})>

Perhaps we’ve written some analysis code that will take both “open” and “closed”
simulation trajectories as input but needs to handle them differently. It can
see what variety of Sim it is working with using

>>> s.categories['state']
'open'

Future: Querying

Tags and categories are two elements of Containers that will be queryable.

Reference: Tags

The class mdsynthesis.core.aggregators.Tags is the interface used
by Containers to access their tags. It is not intended to be used on its own,
but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Tags(container, containerfile, logger)

	Interface to tags.

	
add(*tags)

	Add any number of tags to the Container.

Tags are individual strings that serve to differentiate Containers from
one another. Sometimes preferable to categories.

	Arguments

	
	tags

	Tags to add. Must be convertable to strings using the str()
builtin. May also be a list of tags.

	
remove(*tags, **kwargs)

	Remove tags from Container.

Any number of tags can be given as arguments, and these will be
deleted.

	Arguments

	
	tags

	Tags to delete.

	Keywords

	
	all

	When True, delete all tags [False]

Reference: Categories

The class mdsynthesis.core.aggregators.Categories is the interface
used by Containers to access their categories. It is not intended to be used on
its own, but is shown here to give a detailed view of its methods.

	
class mdsynthesis.core.aggregators.Categories(container, containerfile, logger)

	Interface to categories.

	
add(*categorydicts, **categories)

	Add any number of categories to the Container.

Categories are key-value pairs of strings that serve to differentiate
Containers from one another. Sometimes preferable to tags.

If a given category already exists (same key), the value given will
replace the value for that category.

	Keywords

	
	categorydict

	dict of categories to add; keys used as keys, values used as
values. Both keys and values must be convertible to strings
using the str() builtin.

	categories

	Categories to add. Keyword used as key, value used as value.
Both must be convertible to strings using the str() builtin.

	
keys()

	Get category keys.

	Returns

	
	keys

	keys present among categories

	
remove(*categories, **kwargs)

	Remove categories from Container.

Any number of categories (keys) can be given as arguments, and these
keys (with their values) will be deleted.

	Arguments

	
	categories

	Categories to delete.

	Keywords

	
	all

	When True, delete all categories [False]

	
values()

	Get category values.

	Returns

	
	values

	values present among categories

Query and high-level control with Coordinators

Because Sims and Groups store their information neatly in their state
files, this data can be aggregated and queried. This allows whole selections
of Containers to be manipulated without needing to hunt them down in the
filesystem. The Coordinator object gives an interface for doing this.
Sims and Groups that are associated with a given Coordinator will
report changes to their state files as they are made, giving the
Coordinator a thin copy of all Containers it is made aware of.

This feature is not yet implemented.

Frequently Asked Questions

	Why PyTables?

PyTables [https://github.com/PyTables/PyTables] is a (fantastic)
interface to the hdf5 [http://www.hdfgroup.org/HDF5/] data format.
Although not itself a relational database, MDSynthesis uses PyTables for
building and managing the persistent state files on disk for Sim,
Group, and Coordinator objects. This was chosen over a traditional
RDBS because we wanted MDSynthesis to be serverless, and SQLite was not
ideal because its file locking mechanisms are known to be unreliable on a
network file system (NFS).

Index

 A
 | B
 | C
 | D
 | G
 | K
 | L
 | M
 | N
 | R
 | S
 | T
 | U
 | V

A

 	
 	activate() (mdsynthesis.core.aggregators.Universes method)

 	add() (mdsynthesis.core.aggregators.Categories method)

 	(mdsynthesis.core.aggregators.Data method)

 	(mdsynthesis.core.aggregators.Members method)

 	(mdsynthesis.core.aggregators.Selections method)

 	(mdsynthesis.core.aggregators.Tags method)

 	(mdsynthesis.core.aggregators.Universes method)

 	
 	append() (mdsynthesis.core.aggregators.Data method)

 	asAtomGroup() (mdsynthesis.core.aggregators.Selections method)

B

 	
 	basedir (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

C

 	
 	Categories (class in mdsynthesis.core.aggregators)

 	categories (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	containertype (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	
 	containertypes (mdsynthesis.core.aggregators.Members attribute)

 	coordinators (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	copy() (mdsynthesis.core.aggregators.Selections method)

 	current() (mdsynthesis.core.aggregators.Universes method)

D

 	
 	Data (class in mdsynthesis.core.aggregators)

 	data (mdsynthesis.core.aggregators.Members attribute)

 	(mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	
 	deactivate() (mdsynthesis.core.aggregators.Universes method)

 	default() (mdsynthesis.core.aggregators.Universes method)

 	define() (mdsynthesis.core.aggregators.Selections method)

 	(mdsynthesis.core.aggregators.Universes method)

G

 	
 	Group (class in mdsynthesis)

K

 	
 	keys() (mdsynthesis.core.aggregators.Categories method)

 	(mdsynthesis.core.aggregators.Selections method)

L

 	
 	locate() (mdsynthesis.core.aggregators.Data method)

 	
 	location (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

M

 	
 	make_filepath() (mdsynthesis.core.aggregators.Data method)

 	
 	Members (class in mdsynthesis.core.aggregators)

 	members (mdsynthesis.Group attribute)

N

 	
 	name (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	
 	names (mdsynthesis.core.aggregators.Members attribute)

R

 	
 	remove() (mdsynthesis.core.aggregators.Categories method)

 	(mdsynthesis.core.aggregators.Data method)

 	(mdsynthesis.core.aggregators.Members method)

 	(mdsynthesis.core.aggregators.Selections method)

 	(mdsynthesis.core.aggregators.Tags method)

 	(mdsynthesis.core.aggregators.Universes method)

 	
 	resnums() (mdsynthesis.core.aggregators.Universes method)

 	retrieve() (mdsynthesis.core.aggregators.Data method)

S

 	
 	Selections (class in mdsynthesis.core.aggregators)

 	
 	selections (mdsynthesis.Sim attribute)

 	Sim (class in mdsynthesis)

T

 	
 	Tags (class in mdsynthesis.core.aggregators)

 	
 	tags (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

U

 	
 	universe (mdsynthesis.Sim attribute)

 	Universes (class in mdsynthesis.core.aggregators)

 	universes (mdsynthesis.Sim attribute)

 	
 	uuid (mdsynthesis.Group attribute)

 	(mdsynthesis.Sim attribute)

 	uuids (mdsynthesis.core.aggregators.Members attribute)

V

 	
 	values() (mdsynthesis.core.aggregators.Categories method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 MDSynthesis: a persistence engine for molecular dynamics data

 		
 Installation

 		
 Datasets and Containers

 		
 Persistence as a feature

 		
 Storing arbitrary datasets

 		
 Minimal blobs

 		
 Reference: Data

 		
 Using Sims to dissect trajectories

 		
 Multiple Universes

 		
 Resnums can also be stored

 		
 Reference: Sim

 		
 Reference: Universes

 		
 Reference: Selections

 		
 Leveraging Groups for aggregate data

 		
 Reference: Group

 		
 Reference: Members

 		
 Differentiating Containers

 		
 Future: Querying

 		
 Reference: Tags

 		
 Reference: Categories

 		
 Query and high-level control with Coordinators

 		
 Frequently Asked Questions

_static/up-pressed.png

_static/up.png

